Extensions 1→N→G→Q→1 with N=C6 and Q=C32⋊C6

Direct product G=N×Q with N=C6 and Q=C32⋊C6
dρLabelID
C6×C32⋊C6366C6xC3^2:C6324,138

Semidirect products G=N:Q with N=C6 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C6⋊(C32⋊C6) = C2×He34S3φ: C32⋊C6/He3C2 ⊆ Aut C654C6:(C3^2:C6)324,144

Non-split extensions G=N.Q with N=C6 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C6.1(C32⋊C6) = C32⋊Dic9φ: C32⋊C6/He3C2 ⊆ Aut C6108C6.1(C3^2:C6)324,8
C6.2(C32⋊C6) = C33⋊C12φ: C32⋊C6/He3C2 ⊆ Aut C6366-C6.2(C3^2:C6)324,14
C6.3(C32⋊C6) = He3.Dic3φ: C32⋊C6/He3C2 ⊆ Aut C61086-C6.3(C3^2:C6)324,16
C6.4(C32⋊C6) = He3.2Dic3φ: C32⋊C6/He3C2 ⊆ Aut C61086-C6.4(C3^2:C6)324,18
C6.5(C32⋊C6) = C2×C32⋊D9φ: C32⋊C6/He3C2 ⊆ Aut C654C6.5(C3^2:C6)324,63
C6.6(C32⋊C6) = C2×C33⋊C6φ: C32⋊C6/He3C2 ⊆ Aut C6186+C6.6(C3^2:C6)324,69
C6.7(C32⋊C6) = C2×He3.S3φ: C32⋊C6/He3C2 ⊆ Aut C6546+C6.7(C3^2:C6)324,71
C6.8(C32⋊C6) = C2×He3.2S3φ: C32⋊C6/He3C2 ⊆ Aut C6546+C6.8(C3^2:C6)324,73
C6.9(C32⋊C6) = C334C12φ: C32⋊C6/He3C2 ⊆ Aut C6108C6.9(C3^2:C6)324,98
C6.10(C32⋊C6) = C32⋊C36central extension (φ=1)366C6.10(C3^2:C6)324,7
C6.11(C32⋊C6) = He3⋊C12central extension (φ=1)363C6.11(C3^2:C6)324,13
C6.12(C32⋊C6) = He3.C12central extension (φ=1)1083C6.12(C3^2:C6)324,15
C6.13(C32⋊C6) = He3.2C12central extension (φ=1)1083C6.13(C3^2:C6)324,17
C6.14(C32⋊C6) = C2×C32⋊C18central extension (φ=1)366C6.14(C3^2:C6)324,62
C6.15(C32⋊C6) = C2×C3≀S3central extension (φ=1)183C6.15(C3^2:C6)324,68
C6.16(C32⋊C6) = C2×He3.C6central extension (φ=1)543C6.16(C3^2:C6)324,70
C6.17(C32⋊C6) = C2×He3.2C6central extension (φ=1)543C6.17(C3^2:C6)324,72
C6.18(C32⋊C6) = C3×C32⋊C12central extension (φ=1)366C6.18(C3^2:C6)324,92

׿
×
𝔽